
 

 

Department of Electrical and Computer Engineering 

University of Rochester, Rochester, NY 

Ph.D. Public Defense 
 

Wednesday, July 27, 2016 

10:30 AM 

Computer Studies Building, Room 426 

 

Accelerating Decoupled Look-ahead to 
Exploit Implicit Parallelism 

Raj Parihar 
 

Supervised by 
Professor Michael C. Huang 

 

Abstract 

Despite the proliferation of multi-core and multi-threaded architectures, exploiting implicit 
parallelism for a single semantic thread is still a crucial component in achieving high performance. While 
a canonical out-of-order engine can effectively uncover implicit parallelism in sequential programs, its 
effectiveness is often hindered by instruction and data supply imperfections (manifested as branch 
mispredictions and cache misses). Look-ahead is a tried-and-true strategy to exploit implicit parallelism, 
but can have resource-inefficient implementations such as in a conventional, monolithic out-of-order 
core. A more decoupled approach with an independent, dedicated look-ahead thread on a separate 
thread context can be a more flexible and effective implementation, especially in a multi-core 
environment. While capable of generating significant performance gains, the look-ahead agent often 
becomes the new speed limit; thus, we explore a range of software and hardware based techniques for 
accelerating the look-ahead agent to exploit implicit parallelism. 

Fortunately, the look-ahead thread has no hard correctness constraints and presents new 
opportunities for optimizations which are not present in traditional architecture. First, we explore 
speculative parallelization in the look-ahead thread which is especially suited for the task of accelerating 
the look-ahead agent. Second, we observe that not all dependences are equal, and some links in a 
dependence chain are weak enough that removing them in the look-ahead thread does not materially 
affect the quality of look-ahead. A trial-and-error approach and a genetic algorithm based self-tuning 
framework can reliably identify weak instructions to improve the speed of the look-ahead thread. We 
further tune look-ahead payload via skipping side-effect free, non-critical (we call them Do-It-Yourself 
or DIY) branches. Finally, we apply self-tuning principles in a multi-program environment to improve 
overall protection and utilization of shared caches which are often shared among multiple competing 
programs. 

With a series of faithful simulation experiments and detailed insightful analysis, we show that while 
the two main drivers for single-thread performance – faster clocks and advancements in 
microarchitecture – have all but stopped in recent years, we can still uncover significant implicit 
parallelism using intelligent look-ahead techniques which brings impressive performance gain at 
relatively low cost. 


